Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment

نویسندگان

  • Hossam Shoeb
  • Ram Sasisekharan
  • Ali Hossam Shoeb
چکیده

Epilepsy is a chronic disorder of the central nervous system that predisposes individuals to experiencing recurrent seizures. It affects 3 million Americans and 50 million people world-wide. A seizure is a transient aberration in the brain's electrical activity that produces disruptive physical symptoms such as a lapse in attention and memory, a sensory hallucination, or a whole-body convulsion. Approximately 1 out of every 3 individuals with epilepsy continues to experience frequent seizures despite treatment with multiple anti-epileptic drugs. These intractable seizures pose a serious risk of injury, limit the independence and mobility of an individual, and result in both social isolation and economic hardship. This thesis presents novel technology intended to ease the burden of intractable seizures. At its heart is a method for computerized detection of seizure onset. The method uses machine learning to construct patient-specific classifiers that are capable of rapid, sensitive, and specific detection of seizure onset. The algorithm detects the onset of a seizure through analysis of the brain's electrical activity alone or in concert with other physiologic signals. When trained on 2 or more seizures and tested on 844 hours of continuous scalp EEG from 23 pediatric epilepsy patients, our algorithm detected 96% of 163 test seizures with a median detection delay of 3 seconds and a median false detection rate of 2 false detections per 24 hour period. In this thesis we also discuss how our detector can be embedded within a lowpower, implantable medical device to enable the delivery of just-in-time therapy that has the potential to either eliminate or attenuate the clinical symptoms associated with seizures. Finally, we report on the in-hospital use of our detector to enable delay-sensitive therapeutic and diagnostic applications. We demonstrate the feasibility of using the algorithm to control the Vagus Nerve Stimulator (an implantable neurostimulator for the treatment of intractable seizures), and to initiate ictal SPECT (a functional neuroimaging modality useful for localizing the cerebral site of origin of a seizure). Thesis Supervisor: John V. Guttag Title: Professor of Electrical Engineering and Computer Science

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

Application of Machine Learning To Epileptic Seizure Detection

We present and evaluate a machine learning approach to constructing patient-specific classifiers that detect the onset of an epileptic seizure through analysis of the scalp EEG, a non-invasive measure of the brain’s electrical activity. This problem is challenging because the brain’s electrical activity is composed of numerous classes with overlapping characteristics. The key steps involved in ...

متن کامل

Automatic Detection of Epileptic Seizure Onset

This thesis addresses the problem of real-time epileptic seizure detection from intracranial EEG (IEEG). One difficulty in creating an approach that can be used for many patients is the heterogeneity of seizure IEEG patterns across different patients and even within a patient. In addition, simultaneously maximizing sensitivity and minimizing latency and false detection rates has been challengin...

متن کامل

Serum Prolactin Level after Febrile Seizure versus Epileptic Seizure in 6-Month-Old to 5-Year-Old Children

Background: Serum prolactin level has been used as an alternative determinant to help differentiate epileptic from non-epileptic seizures. We aimed to analyze the association between serum prolactin concentration and epileptic seizure versus febrile seizure as well as seizure duration, single versus multiple seizure attacks and time lapse between seizure onset and blood sampling. Methods: Seven...

متن کامل

Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier

Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010